滨æ“v湿地为包括äh¾cÕdœ¨å†…的众多生物æ供了å®è´ëŠš„生æ€ç³»¾lŸæœåŠ¡åŠŸèƒ½ï¼Œç„¶è€Œè¿™ä¸€é‡è¦çš„生æ€ç³»¾lŸæ£æ—¥ç›Šå—到äºÞZØ“‹zÕdŠ¨çš„å¨èƒã€‚自工业é©å‘½ä»¥æ¥åQŒå¤§æ°”ä¸çš„二氧化¼„»I¼ˆCO2åQ‰æµ“度从280 ppmå¢žåŠ åˆ?/span>410 ppmåQŒé¢„计到2100òq´å°†‘…过900 ppm。在陆地生æ€ç³»¾lŸä¸åQ?/span>CO2‹¹“度的上å‡é€šå¸¸ä¼šä¿ƒ˜q?/span>C3æ¤ç‰©çš„å…‰åˆä½œç”¨å’Œåˆçñ”生äñ”力,从而导致æ¤ç‰©åÅžæ€çš„å˜åŒ–。但是,与木本æ¤ç‰©æˆ–农作物相比,éžæœ¨æœ¬å…‹éš†æ¤ç‰©å¯¹CO2å‡é«˜çš„åÅžæ€å“应模å¼å´é²œæœ‰ç ”究。考虑到ç»å¤§å¤šæ•°ç›æ²¼æ¤è¢«éƒ½æ˜¯å…‹éš†æ¤ç‰©ï¼Œä¸”其形æ€å˜åŒ–将直接军_®šæ»¨æ“v湿地生æ€ç³»¾lŸçš„¾l“构和功能,å¢è’™åšå£«åŠåˆä½œè€…在ä½äºŽ¾ŸŽå›½ä¸œæ“vå²?/span>Chesapeake Bayçš„ç›æ²¼æ¹¿åœ°å¼€å±•äº†30余年çš?/span>CO2å€å¢žå®žéªŒòq¶æµ‹é‡äº†‘…过20ä¸‡æ ªçš„æ¤ç‰©åÅžæ€æ•°æ®ï¼Œä»¥æŽ¢è®¨å…¨çƒå˜åŒ–背景下ç›æ²¼æ¹¿åœ°æ¤ç‰©å½¢æ€å˜åŒ–对生æ€ç³»¾lŸç»“构和功能的媄å“ã€?/span>
™å¹ç›®¾l„ç ”½I¶è¡¨æ˜Žï¼Œ30òq´çš„å€å¢žCO2控制实验æ高了ç›æ²¼æ¹¿åœ°ç”Ÿæ€ç³»¾lŸåˆ¾U§ç”Ÿäº§åŠ›å’Œæ¤è¢«çš„密度åQŒä½†é™ä½Žäº†ä¼˜åŠ¿å…‹éš†ç‰©¿U?/span>Schoenoplectus americanus的茎¿U†ç›´å¾„和高度åQ?/span>Fig. 1åQ‰ã€‚较ž®ï¼Œè¾ƒå¯†çš„茎¿U†ä¸Žæ ¹å’Œæ ¹çŠ¶èŒŽçš„æ‰©å¼ æœ‰å…³åQŒä»¥å‡è½»CO2å€å¢žæ¡äšg下导致的氮(NåQ‰é™åˆÓž¼Œ˜q™ä¸€ç‚¹å¯ç”ÞpŒŽ¿U†ã€ç»†æ V€æ ¹çŠ¶èŒŽå’Œå‡‹è½ç‰©ä¸å‡é«˜çš„Nå«é‡åQŒå¢žåŠ çš„æ¤ç‰©¾l„织¼„ÏxÛ比(CåQ?/span>N ratioåQ‰ï¼Œå’Œé™ä½Žçš„土壤å”éš™æ°´æ— æœºæÛå«é‡æ‰€è¯æ˜ŽåQ?/span>Fig. 2aåQ‰ã€‚在å¦ä¸€¾l„å€å¢žCO2å’ŒæÛæ·ÕdŠ åQ?/span>CO2 + NåQ‰æŽ§åˆ¶å®žéªŒä¸åQ?/span>Schoenoplectus americanusçš„åÅžæ€å˜åŒ–得到å转,匙ŒŽ¿U†ç›´å¾„和高度åŒæ—¶å¢žåŠ åQ?/span>Fig. 2båQ‰ã€‚å› æ¤æˆ‘们得出,土壤有效氮是控制æ¤ç‰©å½¢æ€å¯¹CO2‹¹“度å˜åŒ–å“åº”çš„å…³é”®å› å(Fig. 3åQ‰ã€?/span>
åŒæ—¶åQŒé¡¹ç›®ç»„æ ÒŽ®ç›æ²¼æ¤è¢«å½¢æ€å¦å’Œç”Ÿç‰©é‡çš„å˜åŒ–,模型模拟了未æ¥æ°”候å˜åŒ–å’Œ‹¹·åã^é¢ä¸Šå‡æƒ…景下滨æ“v湿地生æ€ç³»¾lŸåœŸå£¤æ²‰¿U¯ç‰©çš„积èšå“应模å¼ï¼Œ¾l“果表明CO2å’?/span>N的交互作用能促进ç›æ²¼æ¹¿åœ°çš„抬å‡ï¼ˆTable 1åQ‰ï¼Œä»Žè€Œäؓ滨æ“v湿地生æ€ç³»¾lŸåº”å¯ÒŽ“vòq³é¢ä¸Šå‡æ供有力的ä¿éšœã€?/span>
è¯¥ç ”½I¶æˆæžœå‘表在最æ–îC¸€æœŸçš„ã€?/span>Nature Climate Change》æ‚å¿—ã€?/span>
全文链接åQ?/span>
https://www.nature.com/articles/s41558-019-0582-x
DOIåQ?/span>https://doi.org/10.1038/s41558-019-0582-x

Fig. 1 Elevated CO2 responses of individual stem of S. americanus in the C3 community of Experiment 1 from 1987 to 2016. The mean ûu s.e.m. (n=5 replicate plots) of stem density (a), stem biomass (b), stem height (c), and stem diameter (d) are shown separately for ambient CO2 (open circles) and elevated CO2 chambers (filled circles).

Fig. 2 The response ratios of key parameters from the two experiments. Elevated CO2 caused symptoms of N limitation such as increased root:shoot ratio and lower available soil N, effects that were mitigated by N addition. Each bar (elevated CO2: open bars, elevated CO2 plus N addition: filled bars) is the mean (ûu s.e.m.) response ratio (Elevated/Ambient) in Experiment 1 (a) and Experiment 2 (b) across all years in the record.

Fig. 3 A conceptual framework for the responses of clonal plant aboveground growth pattern to CO2 enrichment and nitrogen availability.
Table 1. Impacts of elevated CO2 and N on plant growth and accretion. Mean values for frontal area per unit volume (m-1), belowground organic accretion (mm yr-1, from Pastore et al. 2017), total belowground productivity (g m-2 yr-1), stem density (shoot m-2), aboveground biomass (g m-2), and modeled aboveground mineral accretion (mm yr-1) for Experiments 1 and 2. Means ûu s.e.m. with the same letter in the same column and experiment are not significantly different from one another (A, B for Experiments 1 and a, b, c for Experiments 2).
  |
Frontal Area |
Measured Belowground Organic Accretion* |
Belowground productivity |
Stem density |
Aboveground Biomass |
Modeled Aboveground Mineral Accretion |
Experiment 1 |
|
|
|
|
|
|
Ambient |
2.2 (0.2)A |
N/A |
269 (21) |
538 (25) |
497 (33) |
4.5 (0.1)A |
CO2 |
2.4 (0.2)B |
N/A |
349 (28) |
784 (30) |
564 (33) |
5.7 (0.1)B |
Experiment 2 |
|
|
|
|
|
|
Ambient |
2.4 (0.2)a |
0.46 (0.3) |
143 (23) |
527 (23) |
587 (52) |
4.2 (0.1)a |
CO2 |
2.6 (0.2)a,b |
1.84 (0.4) |
228 (25) |
598 (30) |
645 (66) |
4.9 (0.1)b |
CO2+N |
3.2 (0.3)b |
1.70 (0.6) |
187 (35) |
633 (31) |
803 (83) |
5.7 (0.1)c |
N |
2.3 (0.2)a |
1.81 (0.5) |
110 (15) |
503 (28) |
555 (60) |
4.4 (0.1)a |